3.285 \(\int \frac {d+e x+f x^2+g x^3}{x^3 \sqrt {a+b x+c x^2}} \, dx\)

Optimal. Leaf size=159 \[ \frac {\sqrt {a+b x+c x^2} (3 b d-4 a e)}{4 a^2 x}-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right ) \left (8 a^2 f-4 a b e-4 a c d+3 b^2 d\right )}{8 a^{5/2}}-\frac {d \sqrt {a+b x+c x^2}}{2 a x^2}+\frac {g \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c}} \]

[Out]

-1/8*(8*a^2*f-4*a*b*e-4*a*c*d+3*b^2*d)*arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))/a^(5/2)+g*arctanh(1/
2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/c^(1/2)-1/2*d*(c*x^2+b*x+a)^(1/2)/a/x^2+1/4*(-4*a*e+3*b*d)*(c*x^2+b*x
+a)^(1/2)/a^2/x

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {1650, 843, 621, 206, 724} \[ -\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right ) \left (8 a^2 f-4 a b e-4 a c d+3 b^2 d\right )}{8 a^{5/2}}+\frac {\sqrt {a+b x+c x^2} (3 b d-4 a e)}{4 a^2 x}-\frac {d \sqrt {a+b x+c x^2}}{2 a x^2}+\frac {g \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*x^2 + g*x^3)/(x^3*Sqrt[a + b*x + c*x^2]),x]

[Out]

-(d*Sqrt[a + b*x + c*x^2])/(2*a*x^2) + ((3*b*d - 4*a*e)*Sqrt[a + b*x + c*x^2])/(4*a^2*x) - ((3*b^2*d - 4*a*c*d
 - 4*a*b*e + 8*a^2*f)*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(8*a^(5/2)) + (g*ArcTanh[(b + 2*
c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/Sqrt[c]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 1650

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = Polynomia
lQuotient[Pq, d + e*x, x], R = PolynomialRemainder[Pq, d + e*x, x]}, Simp[(e*R*(d + e*x)^(m + 1)*(a + b*x + c*
x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^
(m + 1)*(a + b*x + c*x^2)^p*ExpandToSum[(m + 1)*(c*d^2 - b*d*e + a*e^2)*Q + c*d*R*(m + 1) - b*e*R*(m + p + 2)
- c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, e, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] &&
 NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {d+e x+f x^2+g x^3}{x^3 \sqrt {a+b x+c x^2}} \, dx &=-\frac {d \sqrt {a+b x+c x^2}}{2 a x^2}-\frac {\int \frac {\frac {1}{2} (3 b d-4 a e)+(c d-2 a f) x-2 a g x^2}{x^2 \sqrt {a+b x+c x^2}} \, dx}{2 a}\\ &=-\frac {d \sqrt {a+b x+c x^2}}{2 a x^2}+\frac {(3 b d-4 a e) \sqrt {a+b x+c x^2}}{4 a^2 x}+\frac {\int \frac {\frac {1}{4} \left (3 b^2 d-4 a b e-4 a (c d-2 a f)\right )+2 a^2 g x}{x \sqrt {a+b x+c x^2}} \, dx}{2 a^2}\\ &=-\frac {d \sqrt {a+b x+c x^2}}{2 a x^2}+\frac {(3 b d-4 a e) \sqrt {a+b x+c x^2}}{4 a^2 x}+\frac {\left (3 b^2 d-4 a c d-4 a b e+8 a^2 f\right ) \int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{8 a^2}+g \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx\\ &=-\frac {d \sqrt {a+b x+c x^2}}{2 a x^2}+\frac {(3 b d-4 a e) \sqrt {a+b x+c x^2}}{4 a^2 x}-\frac {\left (3 b^2 d-4 a c d-4 a b e+8 a^2 f\right ) \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{4 a^2}+(2 g) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )\\ &=-\frac {d \sqrt {a+b x+c x^2}}{2 a x^2}+\frac {(3 b d-4 a e) \sqrt {a+b x+c x^2}}{4 a^2 x}-\frac {\left (3 b^2 d-4 a c d-4 a b e+8 a^2 f\right ) \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{8 a^{5/2}}+\frac {g \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.36, size = 137, normalized size = 0.86 \[ \frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+x (b+c x)}}\right ) \left (4 a b e+4 a (c d-2 a f)-3 b^2 d\right )}{8 a^{5/2}}+\frac {\sqrt {a+x (b+c x)} (3 b d x-2 a (d+2 e x))}{4 a^2 x^2}+\frac {g \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+x (b+c x)}}\right )}{\sqrt {c}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*x^2 + g*x^3)/(x^3*Sqrt[a + b*x + c*x^2]),x]

[Out]

(Sqrt[a + x*(b + c*x)]*(3*b*d*x - 2*a*(d + 2*e*x)))/(4*a^2*x^2) + ((-3*b^2*d + 4*a*b*e + 4*a*(c*d - 2*a*f))*Ar
cTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + x*(b + c*x)])])/(8*a^(5/2)) + (g*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a +
 x*(b + c*x)])])/Sqrt[c]

________________________________________________________________________________________

fricas [A]  time = 4.81, size = 783, normalized size = 4.92 \[ \left [\frac {8 \, a^{3} \sqrt {c} g x^{2} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) - {\left (4 \, a b c e - 8 \, a^{2} c f - {\left (3 \, b^{2} c - 4 \, a c^{2}\right )} d\right )} \sqrt {a} x^{2} \log \left (-\frac {8 \, a b x + {\left (b^{2} + 4 \, a c\right )} x^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{2}}\right ) - 4 \, {\left (2 \, a^{2} c d - {\left (3 \, a b c d - 4 \, a^{2} c e\right )} x\right )} \sqrt {c x^{2} + b x + a}}{16 \, a^{3} c x^{2}}, -\frac {16 \, a^{3} \sqrt {-c} g x^{2} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + {\left (4 \, a b c e - 8 \, a^{2} c f - {\left (3 \, b^{2} c - 4 \, a c^{2}\right )} d\right )} \sqrt {a} x^{2} \log \left (-\frac {8 \, a b x + {\left (b^{2} + 4 \, a c\right )} x^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{2}}\right ) + 4 \, {\left (2 \, a^{2} c d - {\left (3 \, a b c d - 4 \, a^{2} c e\right )} x\right )} \sqrt {c x^{2} + b x + a}}{16 \, a^{3} c x^{2}}, \frac {4 \, a^{3} \sqrt {c} g x^{2} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) - {\left (4 \, a b c e - 8 \, a^{2} c f - {\left (3 \, b^{2} c - 4 \, a c^{2}\right )} d\right )} \sqrt {-a} x^{2} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{2} + a b x + a^{2}\right )}}\right ) - 2 \, {\left (2 \, a^{2} c d - {\left (3 \, a b c d - 4 \, a^{2} c e\right )} x\right )} \sqrt {c x^{2} + b x + a}}{8 \, a^{3} c x^{2}}, -\frac {8 \, a^{3} \sqrt {-c} g x^{2} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + {\left (4 \, a b c e - 8 \, a^{2} c f - {\left (3 \, b^{2} c - 4 \, a c^{2}\right )} d\right )} \sqrt {-a} x^{2} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{2} + a b x + a^{2}\right )}}\right ) + 2 \, {\left (2 \, a^{2} c d - {\left (3 \, a b c d - 4 \, a^{2} c e\right )} x\right )} \sqrt {c x^{2} + b x + a}}{8 \, a^{3} c x^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^3+f*x^2+e*x+d)/x^3/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(8*a^3*sqrt(c)*g*x^2*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*
c) - (4*a*b*c*e - 8*a^2*c*f - (3*b^2*c - 4*a*c^2)*d)*sqrt(a)*x^2*log(-(8*a*b*x + (b^2 + 4*a*c)*x^2 - 4*sqrt(c*
x^2 + b*x + a)*(b*x + 2*a)*sqrt(a) + 8*a^2)/x^2) - 4*(2*a^2*c*d - (3*a*b*c*d - 4*a^2*c*e)*x)*sqrt(c*x^2 + b*x
+ a))/(a^3*c*x^2), -1/16*(16*a^3*sqrt(-c)*g*x^2*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2
 + b*c*x + a*c)) + (4*a*b*c*e - 8*a^2*c*f - (3*b^2*c - 4*a*c^2)*d)*sqrt(a)*x^2*log(-(8*a*b*x + (b^2 + 4*a*c)*x
^2 - 4*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(a) + 8*a^2)/x^2) + 4*(2*a^2*c*d - (3*a*b*c*d - 4*a^2*c*e)*x)*sqr
t(c*x^2 + b*x + a))/(a^3*c*x^2), 1/8*(4*a^3*sqrt(c)*g*x^2*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x
+ a)*(2*c*x + b)*sqrt(c) - 4*a*c) - (4*a*b*c*e - 8*a^2*c*f - (3*b^2*c - 4*a*c^2)*d)*sqrt(-a)*x^2*arctan(1/2*sq
rt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(-a)/(a*c*x^2 + a*b*x + a^2)) - 2*(2*a^2*c*d - (3*a*b*c*d - 4*a^2*c*e)*x)*
sqrt(c*x^2 + b*x + a))/(a^3*c*x^2), -1/8*(8*a^3*sqrt(-c)*g*x^2*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sq
rt(-c)/(c^2*x^2 + b*c*x + a*c)) + (4*a*b*c*e - 8*a^2*c*f - (3*b^2*c - 4*a*c^2)*d)*sqrt(-a)*x^2*arctan(1/2*sqrt
(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(-a)/(a*c*x^2 + a*b*x + a^2)) + 2*(2*a^2*c*d - (3*a*b*c*d - 4*a^2*c*e)*x)*sq
rt(c*x^2 + b*x + a))/(a^3*c*x^2)]

________________________________________________________________________________________

giac [B]  time = 0.36, size = 352, normalized size = 2.21 \[ -\frac {g \log \left ({\left | -2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} c - b \sqrt {c} \right |}\right )}{\sqrt {c}} + \frac {{\left (3 \, b^{2} d - 4 \, a c d + 8 \, a^{2} f - 4 \, a b e\right )} \arctan \left (-\frac {\sqrt {c} x - \sqrt {c x^{2} + b x + a}}{\sqrt {-a}}\right )}{4 \, \sqrt {-a} a^{2}} - \frac {3 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} b^{2} d - 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} a c d - 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} a b e - 8 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} a^{2} \sqrt {c} e - 5 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a b^{2} d - 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a^{2} c d + 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a^{2} b e - 8 \, a^{2} b \sqrt {c} d + 8 \, a^{3} \sqrt {c} e}{4 \, {\left ({\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} - a\right )}^{2} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^3+f*x^2+e*x+d)/x^3/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

-g*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*c - b*sqrt(c)))/sqrt(c) + 1/4*(3*b^2*d - 4*a*c*d + 8*a^2*f -
 4*a*b*e)*arctan(-(sqrt(c)*x - sqrt(c*x^2 + b*x + a))/sqrt(-a))/(sqrt(-a)*a^2) - 1/4*(3*(sqrt(c)*x - sqrt(c*x^
2 + b*x + a))^3*b^2*d - 4*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*a*c*d - 4*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^
3*a*b*e - 8*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*a^2*sqrt(c)*e - 5*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*a*b^2*
d - 4*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*a^2*c*d + 4*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*a^2*b*e - 8*a^2*b*sq
rt(c)*d + 8*a^3*sqrt(c)*e)/(((sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2 - a)^2*a^2)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 241, normalized size = 1.52 \[ -\frac {f \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )}{\sqrt {a}}+\frac {b e \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )}{2 a^{\frac {3}{2}}}+\frac {c d \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )}{2 a^{\frac {3}{2}}}-\frac {3 b^{2} d \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )}{8 a^{\frac {5}{2}}}+\frac {g \ln \left (\frac {c x +\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{\sqrt {c}}-\frac {\sqrt {c \,x^{2}+b x +a}\, e}{a x}+\frac {3 \sqrt {c \,x^{2}+b x +a}\, b d}{4 a^{2} x}-\frac {\sqrt {c \,x^{2}+b x +a}\, d}{2 a \,x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x^3+f*x^2+e*x+d)/x^3/(c*x^2+b*x+a)^(1/2),x)

[Out]

g*ln((c*x+1/2*b)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)-1/2*d*(c*x^2+b*x+a)^(1/2)/a/x^2+3/4*d*b/a^2/x*(c*x^2+b*x
+a)^(1/2)-3/8*d*b^2/a^(5/2)*ln((b*x+2*a+2*(c*x^2+b*x+a)^(1/2)*a^(1/2))/x)+1/2*d*c/a^(3/2)*ln((b*x+2*a+2*(c*x^2
+b*x+a)^(1/2)*a^(1/2))/x)-e/a/x*(c*x^2+b*x+a)^(1/2)+1/2*e*b/a^(3/2)*ln((b*x+2*a+2*(c*x^2+b*x+a)^(1/2)*a^(1/2))
/x)-f/a^(1/2)*ln((b*x+2*a+2*(c*x^2+b*x+a)^(1/2)*a^(1/2))/x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^3+f*x^2+e*x+d)/x^3/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {g\,x^3+f\,x^2+e\,x+d}{x^3\,\sqrt {c\,x^2+b\,x+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x + f*x^2 + g*x^3)/(x^3*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int((d + e*x + f*x^2 + g*x^3)/(x^3*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {d + e x + f x^{2} + g x^{3}}{x^{3} \sqrt {a + b x + c x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x**3+f*x**2+e*x+d)/x**3/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((d + e*x + f*x**2 + g*x**3)/(x**3*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________